Perbedaan Refund dengan Return
Banyak orang masih salah mengartikan antara refund dan return. Tak ayal, banyak orang mengira jika keduanya adalah dua hal yang sama. Untuk memudahkan Anda dalam memahami perbedaan antara keduanya, berikut penjelasan singkatnya.
1. Refund artinya pengembalian dana dari penjual ke pembeli, sedangkan return adalah pengembalian barang dari pembeli ke penjual.
2. Objek yang dikembalikan pada refund berupa uang, sedangkan return objek yang dikembalikan berupa barang.
Singkatnya perbedaan antara refund dengan return terdapat pada objek yang dikembalikan.
Partial Refund (Pengembalian Dana Hanya Sebagian)
Partial refund adalah solusi pengembalian dana yang dilakukan dengan cara mengembalikan sebagian dana yang telah dibayarkan oleh pembeli. Dengan kata lain, dana yang dikembalikan tidak 100% melainkan hanya sebagian saja.
Selain itu, partial refund juga dapat berupa kombinasi antara uang dengan voucher atau uang dengan sebagian barang. Hal ini bergantung pada kebijakan serta kesepakatan yang diperoleh antara kedua belah pihak.
Memberikan Bantuan Jasa
Kado pernikahan dapat berwujud apa saja. Salah satunya yakni berupa bantuan jasa. Adanya bantuan ini akan sangat berarti bagi mereka karena mampu meringankan beban pikiran dan tenaga.
Anda bisa menawarkan bantuan jasa berupa persiapan pernikahan ataupun mengurus acara pernikahan sampai selesai. Apapun itu bantuannya, kedua mempelai pasti akan sangat berterima kasih kepada Anda.
Teliti Saat Membeli
Tips pertama yang bisa Anda lakukan untuk menghindari terjadinya refund yakni dengan cara teliti saat membeli. Pastikan untuk melakukan riset sebelum memantapkan hati membeli produk incaran Anda. Beberapa hal yang bisa Anda lakukan diantaranya yaitu membaca deskripsi produk secara seksama, cek review atau testimoni pembeli lainnya, dan pastikan produk yang ada sesuai dengan kebutuhan serta ekspektasi Anda.
Cara Melakukan Refund
Cara melakukan refund dapat Anda lakukan dengan mudah sesuai dengan syarat dan ketentuan yang disediakan oleh pihak penjual. Meskipun demikian, tidak ada salahnya jika Anda melakukan beberapa persiapan berikut ini agar proses refund dapat berjalan sebagaimana mestinya.
Image Source: Freepik/timeimage
Pilih Kado Unik dan Anti Mainstream
Untuk menambah kesan yang berbeda dan tidak biasa, Anda bisa memilih kado pernikahan yang unik dan antimainstream. Namun, pastikan hadiah yang Anda pilih masih berkaitan dengan minat dan kepribadian kedua mempelai pengantin, ya!
Logam Mulia atau Emas
Punya budget hadiah yang cukup memadai? Kado pernikahan berupa logam mulia atau emas bisa jadi pilihannya! Emas merupakan salah satu instrumen investasi yang memiliki nilai cukup stabil dari tahun ke tahun. Selain itu, saat ini sudah tersedia emas yang bisa dibuat sesuai dengan keinginan kita (custom). Misalnya diberi tulisan atau ucapan tertentu.
Structure and implementation
Hardwired into a CPU's circuitry is a set of basic operations it can perform, called an instruction set. Such operations may involve, for example, adding or subtracting two numbers, comparing two numbers, or jumping to a different part of a program. Each instruction is represented by a unique combination of bits, known as the machine language opcode. While processing an instruction, the CPU decodes the opcode (via a binary decoder) into control signals, which orchestrate the behavior of the CPU. A complete machine language instruction consists of an opcode and, in many cases, additional bits that specify arguments for the operation (for example, the numbers to be summed in the case of an addition operation). Going up the complexity scale, a machine language program is a collection of machine language instructions that the CPU executes.
The actual mathematical operation for each instruction is performed by a combinational logic circuit within the CPU's processor known as the arithmetic–logic unit or ALU. In general, a CPU executes an instruction by fetching it from memory, using its ALU to perform an operation, and then storing the result to memory. Besides the instructions for integer mathematics and logic operations, various other machine instructions exist, such as those for loading data from memory and storing it back, branching operations, and mathematical operations on floating-point numbers performed by the CPU's floating-point unit (FPU).[68]
The control unit (CU) is a component of the CPU that directs the operation of the processor. It tells the computer's memory, arithmetic and logic unit and input and output devices how to respond to the instructions that have been sent to the processor.
It directs the operation of the other units by providing timing and control signals. Most computer resources are managed by the CU. It directs the flow of data between the CPU and the other devices. John von Neumann included the control unit as part of the von Neumann architecture. In modern computer designs, the control unit is typically an internal part of the CPU with its overall role and operation unchanged since its introduction.[69]
Voltage regulator module
Many modern CPUs have a die-integrated power managing module which regulates on-demand voltage supply to the CPU circuitry allowing it to keep balance between performance and power consumption.
Every CPU represents numerical values in a specific way. For example, some early digital computers represented numbers as familiar decimal (base 10) numeral system values, and others have employed more unusual representations such as ternary (base three). Nearly all modern CPUs represent numbers in binary form, with each digit being represented by some two-valued physical quantity such as a "high" or "low" voltage.[g]
Related to numeric representation is the size and precision of integer numbers that a CPU can represent. In the case of a binary CPU, this is measured by the number of bits (significant digits of a binary encoded integer) that the CPU can process in one operation, which is commonly called word size, bit width, data path width, integer precision, or integer size. A CPU's integer size determines the range of integer values on which it can directly operate.[h] For example, an 8-bit CPU can directly manipulate integers represented by eight bits, which have a range of 256 (28) discrete integer values.
Integer range can also affect the number of memory locations the CPU can directly address (an address is an integer value representing a specific memory location). For example, if a binary CPU uses 32 bits to represent a memory address then it can directly address 232 memory locations. To circumvent this limitation and for various other reasons, some CPUs use mechanisms (such as bank switching) that allow additional memory to be addressed.
CPUs with larger word sizes require more circuitry and consequently are physically larger, cost more and consume more power (and therefore generate more heat). As a result, smaller 4- or 8-bit microcontrollers are commonly used in modern applications even though CPUs with much larger word sizes (such as 16, 32, 64, even 128-bit) are available. When higher performance is required, however, the benefits of a larger word size (larger data ranges and address spaces) may outweigh the disadvantages. A CPU can have internal data paths shorter than the word size to reduce size and cost. For example, even though the IBM System/360 instruction set architecture was a 32-bit instruction set, the System/360 Model 30 and Model 40 had 8-bit data paths in the arithmetic logical unit, so that a 32-bit add required four cycles, one for each 8 bits of the operands, and, even though the Motorola 68000 series instruction set was a 32-bit instruction set, the Motorola 68000 and Motorola 68010 had 16-bit data paths in the arithmetic logical unit, so that a 32-bit add required two cycles.
To gain some of the advantages afforded by both lower and higher bit lengths, many instruction sets have different bit widths for integer and floating-point data, allowing CPUs implementing that instruction set to have different bit widths for different portions of the device. For example, the IBM System/360 instruction set was primarily 32 bit, but supported 64-bit floating-point values to facilitate greater accuracy and range in floating-point numbers.[37] The System/360 Model 65 had an 8-bit adder for decimal and fixed-point binary arithmetic and a 60-bit adder for floating-point arithmetic.[76] Many later CPU designs use similar mixed bit width, especially when the processor is meant for general-purpose use where a reasonable balance of integer and floating-point capability is required.
The description of the basic operation of a CPU offered in the previous section describes the simplest form that a CPU can take. This type of CPU, usually referred to as subscalar, operates on and executes one instruction on one or two pieces of data at a time, that is less than one instruction per clock cycle (IPC < 1).
This process gives rise to an inherent inefficiency in subscalar CPUs. Since only one instruction is executed at a time, the entire CPU must wait for that instruction to complete before proceeding to the next instruction. As a result, the subscalar CPU gets "hung up" on instructions which take more than one clock cycle to complete execution. Even adding a second execution unit (see below) does not improve performance much; rather than one pathway being hung up, now two pathways are hung up and the number of unused transistors is increased. This design, wherein the CPU's execution resources can operate on only one instruction at a time, can only possibly reach scalar performance (one instruction per clock cycle, IPC = 1). However, the performance is nearly always subscalar (less than one instruction per clock cycle, IPC < 1).
Attempts to achieve scalar and better performance have resulted in a variety of design methodologies that cause the CPU to behave less linearly and more in parallel. When referring to parallelism in CPUs, two terms are generally used to classify these design techniques:
Each methodology differs both in the ways in which they are implemented, as well as the relative effectiveness they afford in increasing the CPU's performance for an application.[i]
One of the simplest methods for increased parallelism is to begin the first steps of instruction fetching and decoding before the prior instruction finishes executing. This is a technique known as instruction pipelining, and is used in almost all modern general-purpose CPUs. Pipelining allows multiple instruction to be executed at a time by breaking the execution pathway into discrete stages. This separation can be compared to an assembly line, in which an instruction is made more complete at each stage until it exits the execution pipeline and is retired.
Pipelining does, however, introduce the possibility for a situation where the result of the previous operation is needed to complete the next operation; a condition often termed data dependency conflict. Therefore, pipelined processors must check for these sorts of conditions and delay a portion of the pipeline if necessary. A pipelined processor can become very nearly scalar, inhibited only by pipeline stalls (an instruction spending more than one clock cycle in a stage).
Improvements in instruction pipelining led to further decreases in the idle time of CPU components. Designs that are said to be superscalar include a long instruction pipeline and multiple identical execution units, such as load–store units, arithmetic–logic units, floating-point units and address generation units.[77] In a superscalar pipeline, instructions are read and passed to a dispatcher, which decides whether or not the instructions can be executed in parallel (simultaneously). If so, they are dispatched to execution units, resulting in their simultaneous execution. In general, the number of instructions that a superscalar CPU will complete in a cycle is dependent on the number of instructions it is able to dispatch simultaneously to execution units.
Most of the difficulty in the design of a superscalar CPU architecture lies in creating an effective dispatcher. The dispatcher needs to be able to quickly determine whether instructions can be executed in parallel, as well as dispatch them in such a way as to keep as many execution units busy as possible. This requires that the instruction pipeline is filled as often as possible and requires significant amounts of CPU cache. It also makes hazard-avoiding techniques like branch prediction, speculative execution, register renaming, out-of-order execution and transactional memory crucial to maintaining high levels of performance. By attempting to predict which branch (or path) a conditional instruction will take, the CPU can minimize the number of times that the entire pipeline must wait until a conditional instruction is completed. Speculative execution often provides modest performance increases by executing portions of code that may not be needed after a conditional operation completes. Out-of-order execution somewhat rearranges the order in which instructions are executed to reduce delays due to data dependencies. Also in case of single instruction stream, multiple data stream, a case when a lot of data from the same type has to be processed, modern processors can disable parts of the pipeline so that when a single instruction is executed many times, the CPU skips the fetch and decode phases and thus greatly increases performance on certain occasions, especially in highly monotonous program engines such as video creation software and photo processing.
When a fraction of the CPU is superscalar, the part that is not suffers a performance penalty due to scheduling stalls. The Intel P5 Pentium had two superscalar ALUs which could accept one instruction per clock cycle each, but its FPU could not. Thus the P5 was integer superscalar but not floating point superscalar. Intel's successor to the P5 architecture, P6, added superscalar abilities to its floating-point features.
Simple pipelining and superscalar design increase a CPU's ILP by allowing it to execute instructions at rates surpassing one instruction per clock cycle. Most modern CPU designs are at least somewhat superscalar, and nearly all general purpose CPUs designed in the last decade are superscalar. In later years some of the emphasis in designing high-ILP computers has been moved out of the CPU's hardware and into its software interface, or instruction set architecture (ISA). The strategy of the very long instruction word (VLIW) causes some ILP to become implied directly by the software, reducing the CPU's work in boosting ILP and thereby reducing design complexity.
Another strategy of achieving performance is to execute multiple threads or processes in parallel. This area of research is known as parallel computing.[78] In Flynn's taxonomy, this strategy is known as multiple instruction stream, multiple data stream (MIMD).[79]
One technology used for this purpose is multiprocessing (MP).[80] The initial type of this technology is known as symmetric multiprocessing (SMP), where a small number of CPUs share a coherent view of their memory system. In this scheme, each CPU has additional hardware to maintain a constantly up-to-date view of memory. By avoiding stale views of memory, the CPUs can cooperate on the same program and programs can migrate from one CPU to another. To increase the number of cooperating CPUs beyond a handful, schemes such as non-uniform memory access (NUMA) and directory-based coherence protocols were introduced in the 1990s. SMP systems are limited to a small number of CPUs while NUMA systems have been built with thousands of processors. Initially, multiprocessing was built using multiple discrete CPUs and boards to implement the interconnect between the processors. When the processors and their interconnect are all implemented on a single chip, the technology is known as chip-level multiprocessing (CMP) and the single chip as a multi-core processor.
It was later recognized that finer-grain parallelism existed with a single program. A single program might have several threads (or functions) that could be executed separately or in parallel. Some of the earliest examples of this technology implemented input/output processing such as direct memory access as a separate thread from the computation thread. A more general approach to this technology was introduced in the 1970s when systems were designed to run multiple computation threads in parallel. This technology is known as multi-threading (MT). The approach is considered more cost-effective than multiprocessing, as only a small number of components within a CPU are replicated to support MT as opposed to the entire CPU in the case of MP. In MT, the execution units and the memory system including the caches are shared among multiple threads. The downside of MT is that the hardware support for multithreading is more visible to software than that of MP and thus supervisor software like operating systems have to undergo larger changes to support MT. One type of MT that was implemented is known as temporal multithreading, where one thread is executed until it is stalled waiting for data to return from external memory. In this scheme, the CPU would then quickly context switch to another thread which is ready to run, the switch often done in one CPU clock cycle, such as the UltraSPARC T1. Another type of MT is simultaneous multithreading, where instructions from multiple threads are executed in parallel within one CPU clock cycle.
For several decades from the 1970s to early 2000s, the focus in designing high performance general purpose CPUs was largely on achieving high ILP through technologies such as pipelining, caches, superscalar execution, out-of-order execution, etc. This trend culminated in large, power-hungry CPUs such as the Intel Pentium 4. By the early 2000s, CPU designers were thwarted from achieving higher performance from ILP techniques due to the growing disparity between CPU operating frequencies and main memory operating frequencies as well as escalating CPU power dissipation owing to more esoteric ILP techniques.
CPU designers then borrowed ideas from commercial computing markets such as transaction processing, where the aggregate performance of multiple programs, also known as throughput computing, was more important than the performance of a single thread or process.
This reversal of emphasis is evidenced by the proliferation of dual and more core processor designs and notably, Intel's newer designs resembling its less superscalar P6 architecture. Late designs in several processor families exhibit CMP, including the x86-64 Opteron and Athlon 64 X2, the SPARC UltraSPARC T1, IBM POWER4 and POWER5, as well as several video game console CPUs like the Xbox 360's triple-core PowerPC design, and the PlayStation 3's 7-core Cell microprocessor.
A less common but increasingly important paradigm of processors (and indeed, computing in general) deals with data parallelism. The processors discussed earlier are all referred to as some type of scalar device.[j] As the name implies, vector processors deal with multiple pieces of data in the context of one instruction. This contrasts with scalar processors, which deal with one piece of data for every instruction. Using Flynn's taxonomy, these two schemes of dealing with data are generally referred to as single instruction stream, multiple data stream (SIMD) and single instruction stream, single data stream (SISD), respectively. The great utility in creating processors that deal with vectors of data lies in optimizing tasks that tend to require the same operation (for example, a sum or a dot product) to be performed on a large set of data. Some classic examples of these types of tasks include multimedia applications (images, video and sound), as well as many types of scientific and engineering tasks. Whereas a scalar processor must complete the entire process of fetching, decoding and executing each instruction and value in a set of data, a vector processor can perform a single operation on a comparatively large set of data with one instruction. This is only possible when the application tends to require many steps which apply one operation to a large set of data.
Most early vector processors, such as the Cray-1, were associated almost exclusively with scientific research and cryptography applications. However, as multimedia has largely shifted to digital media, the need for some form of SIMD in general-purpose processors has become significant. Shortly after inclusion of floating-point units started to become commonplace in general-purpose processors, specifications for and implementations of SIMD execution units also began to appear for general-purpose processors.[when?] Some of these early SIMD specifications – like HP's Multimedia Acceleration eXtensions (MAX) and Intel's MMX – were integer-only. This proved to be a significant impediment for some software developers, since many of the applications that benefit from SIMD primarily deal with floating-point numbers. Progressively, developers refined and remade these early designs into some of the common modern SIMD specifications, which are usually associated with one instruction set architecture (ISA). Some notable modern examples include Intel's Streaming SIMD Extensions (SSE) and the PowerPC-related AltiVec (also known as VMX).[k]
Pastikan Anda Memiliki Video Unboxing Produk
Selanjutnya dan yang paling penting adalah melampirkan bukti berupa video unboxing yang menunjukan jika produk yang diterima tidak sesuai.
Pastikan untuk merekam sejelas-jelasnya tanpa ada jeda video agar penjual dapat mengecek keasliannya dan memproses pengajuan refund yang Anda ajukan.